NEB-XII
Model Question
Mathematics
2079/2023
Candidates are required to give their answers in their own
words as far as practicable. The figures in the margin indicate full marks.
Time: 3hrs
Full Marks: 75
Attempt all questions.
Group A
1) What is an arrangement of the n natural numbers called?
A) Induction
B) Permutation
C) Combination
D) Expectation
2) Let 1, w, w 2 be the cube roots of unity. Under which
operation is the set A= {1, w, w 2 } closed?
A) Addition
B) Subtraction
C) Multiplication
D) Division
3) What is the domain of sin-1 x ?
A) x≥1 or x ≤-1
B) (-∞,∞)
C) -1<x<1
D) -1 x 1 4)
4) ABCD is a parallelogram. Which one of the following
represents area of the parallelogram?
A) Magnitude of vector product of two vectors along AB and
BD.
B) Magnitude of vector product of two vectors along AB and
DC.
C) Magnitude of vector product of two vectors along AC and
BC.
D) Magnitude of vector product of two vectors along AB and
AD.
5) If a conic section has eccentricity(e) =$\frac{{\sqrt {{a^2}
- {b^2}} }}{a}$ what is the equation of that conic section?
A) $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$
B )$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$
C) $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{a^2}}} = 1$
D) $\frac{{{x^2}}}{{{b^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$
6) If cosӨ =−$\frac{1}{2}$ for integer (n), what is the
general value of Ө ?
A) 2n𝜋 ± $\frac{{2\pi
}}{3}$
B) n𝜋 + (−1)n$\frac{\pi
}{3}$
C) n𝜋 − $\frac{\pi }{3}$
D) n𝜋 +$\frac{\pi }{3}$
7) Let A and B be two dependent events. If P (A) =
$\frac{1}{2}$ , P (B) = $\frac{3}{4}$ and P (A ∩ B) =
$\frac{2}{5}$ , what is the value of P(A/B) ?
A) equal to P(B/A)
B) equal to P(A)
C) less than P(A ∩ B)
D) less than P(B/A)
8) The edge of a cube increases from 10 cm to 10.025 cm.
What would be the approximate increment in volume?
A) 103 cm3
B) 10.0253 cm3
C) 7.5187 cm3
9) What is the integrating factor of the differential
equation cos2x $\frac{{dy}}{{dx}}$ + y =1?
A) tan x
B) etanx
C) sec2x
D)esec1x
10) What is the number of solutions of the system of linear
equations x + y = 5 and x + y = 7 ?
A) One solution
B) No solution
C) Infinite solutions
D) More than one solution
11) Forces P and Q are acting along ceiling and floor of a
rectangular room. What is the nature of the forces?
A) Like
B) Unlike
C) collinear
D) parallel
OR
If ∆yt = yt+1 - yt,
then ∆2yt is equal to…
A) yt + 2 - yt +1
B) yt+1 - yt
C)yt+2 - yt+1 + yt
D)
Group B
12) For any positive integer n, (a+x)n = C0an
+ C1an-1x + C2an-2x2+……+cnxn.
a) How many terms are there in the expression?
b) Write binomial coefficient in the expansions?
c) Write the general term of the expansion.
d) Write the relations among C (n, r-1), C (n+1, r) and C
(n, r).
e) What is the value of C0+C1+C2
+…+Cn?
Solution:
(a) There will be (n+1) numbers of terms in the
expansion of (a+x)n = C0an + C1an-1x
+ C2an-2x2+……+cnxn.
(b) The binomial coefficient in the expansion of (a+x)n
= C0an + C1an-1x + C2an-2x2+……+cnxn
are: C0, C1an-1, C2an-2,……Cn
(c) The general terms of the expansion is nCran-rxr.
(d) The relations among C (n, r-1), C (n+1, r) and C
(n, r) is nCr + nCr-1 = n+1Cr.
(e) The value of C0+C1+C2 +…+Cn
is 2n.
13) a) Using the principle of mathematical induction,
show that: 1+2+3+…+n < $\frac{1}{8}$(2n+1)2.
b) Find the quadratic equation whose one of the cube
roots is 2+$\sqrt 3$
Solution:
Step 1: Let n = 1
P(1): 1<$\frac{1}{8}$[2(1)+1]2 is true.
Hence, the statement is true for n=1
Step 2: Assume that the statement is true for n=k
P (k) : 1 + 2 + 3 + … + k < $\frac{1}{8}$ (2k+1)2
Step 3: Prove that the statement is true
for n=k+1
We need to prove that:
1 + 2 + 3 + …. + (k+1) < $\frac{1}{8}$ [(2k+1)2] + k+1
< $\frac{1}{8}$
[4k2+4k+1] + 8 ×$\frac{1}{8}$
× (k+1)
<$\frac{1}{8}$
[4k2+4k+1+8k+8]
<$\frac{1}{8}$
[4k2+12k+9]
<$\frac{1}{8}$
[2k+3]2
<$\frac{1}{8}$[2(k+1)+1]2
(b) For the quadratic equation if one root (α)= 2
+$\sqrt 3$
Another Root (β) = 2 - $\sqrt 3$
Sum of Roots (α+ β) = 2 - $\sqrt 3$ + 2 +$\sqrt 3$ =4
Products of Roots (α × β) = (2 - $\sqrt 3$)(2 + $\sqrt 3$) = 1
∴Quadratic equation : x2 -(α+ β)x
+ (α
× β) =0
∴ x2−4x+1=0 is required equations.
14) a) Given y = sin-1x and y>0, express
cos y and tan y in terms of x.
b) If $\overrightarrow a $, $\overrightarrow b $, and $\overrightarrow
c $ are any three vectors such that $\overrightarrow a $ × $\overrightarrow
b $ = $\overrightarrow a $ × $\overrightarrow c$ for $\overrightarrow a$ ≠(0,0).
Show that: $\overrightarrow b $ = $\overrightarrow c $.
Solution:
(a) Given:
y = sin-1x
or, x = sin y
Or, Cos2y=1- Sin2y
Or, Cos2y = 1-x2
Thus, Cos y = $\sqrt {1 - {x^2}} $
And, $ {\mathop{\rm Tan}\nolimits} y = \frac{{\sin x}}{{\cos
x}} = \frac{x}{{\sqrt {1 - {x^2}} }}$
(b) Given:
$\overrightarrow a $ × $\overrightarrow b $ = $\overrightarrow a $ × $\overrightarrow c$
If Cross product is equal then their magnitude is also
equal.
|$\overrightarrow a $ × $\overrightarrow b $ | = | $\overrightarrow a $ × $\overrightarrow c$|
Or, |$\overrightarrow a $|
|$\overrightarrow b $| Sinθ = | $\overrightarrow a $| |$\overrightarrow
c$| Sinθ
Or, |$\overrightarrow b $ |=|$\overrightarrow c $ |
∴ $\overrightarrow b $ = $\overrightarrow c $
15) The price in Rupees (X) and demand in unit (Y) of 6
days of a week is given as:
X |
10 |
12 |
13 |
12 |
16 |
15 |
Y |
40 |
38 |
43 |
45 |
37 |
43 |
Calculate the Pearson’s Coefficient of Correlation and
the regression coefficients of X on Y.
Solution:
x |
y |
xy |
x2 |
y2 |
10 |
40 |
400 |
100 |
1600 |
12 |
38 |
456 |
144 |
1444 |
13 |
43 |
559 |
169 |
1849 |
12 |
45 |
540 |
144 |
2025 |
16 |
37 |
592 |
256 |
1369 |
15 |
43 |
645 |
225 |
1849 |
Σx=78 |
Σy=246 |
Σxy=3192 |
Σx2=1038 |
Σy2=10136 |
Value of n = 6
Now, Regression Coefficient of x on
y is
16) a) Define Hospital’s rule.
b) Write the slope of the tangent and normal to the curve
y =f(x) at (x1,y1).
c) Write the integral of $\int {\frac{1}{{{x^2} +
{a^2}}}} dx$.
d)What is the integral of $\int {\sinh x.dx}$
Solution:
(a) If f(x) and g(s) are two function then their
derivatives f’(x) and g’(x) are continuous at x=0 and if f(a) =g(a), then,
$\mathop {\lim }\limits_{x \to a} \frac{{f(x)}}{{g(x)}} =
\mathop {\lim }\limits_{x \to a} \frac{{f'(x)}}{{g'(x)}} =
\frac{{f'(a)}}{{g'(a)}}$ When g’(a)≠0.
(b) The slope of tangant to the curve y=f(x) at (x1,y1)
is
$\frac{{dy}}{{dx}} = f'(x)$
$ \Rightarrow {\frac{{dy}}{{dx}}_{\left( {{x_1},{y_1}}
\right)}} = f'({x_1})$
Then, Slope of normal to y=f(x) at ((x1,y1)) is
F’(x). m = -1
Thus, m=$ - \frac{{dx}}{{dy}}$
(c) $\int {\frac{1}{{{x^2} + {a^2}}}} dx$=$\frac{1}{a}{\tan
^{ - 1}}\frac{x}{a} + C$
(d) $\int {\sinh x.dx}$ = coshx +C
17) a) Solve: $\frac{{dy}}{{dx}} = \frac{y}{x}$
b) Verify Rolle’s Theorem for f(x) = x2+3x-4
in [-4,1].
Solution:
$\frac{{dy}}{{dx}} = \frac{y}{x}$
$\frac{{dy}}{y} = \frac{{dx}}{x}$
Integrating both sides:
ln(y) = ln(x) +C
or, ln(y) = ln(x) + ln(C)
Thus, y=xc
(b) f(x) = x2+3x-4 in [-4,1]
(i) Here f(x) is a polynomial function so it is continuous at
[-4,1].
(ii) f’(x) = 2x+3
f(x) is differentiable in (-4, 1).
(iii) f(-4) = 0, f(1) = 0
Thus, f(a) = f(b).
All the condition of Rolle’s Theorem are verified. So there
exists at least a point C ε (-4, 1).
Such that: f’(C) =0.
18) Using simplex method, maximize P
(x, y) = 15x+10y subject to 2x+y≤10, x+3y≤10, x, y≥0.
Solution:
Maximize P (x, y) = 15x+10y
Subject to:
2x+y≤10
x+3y≤10
x, y≥0
Let S1 and S2 be two non-negative
slack variables. Then, the standard form of the above LPP is:
2x+y+r =10
x+3y+s=10
-15x-10y+P=0
The initial simplex tableau for above LLP is
Basic Variable |
x |
y |
r |
s |
p |
Constant |
r |
2 |
1 |
1 |
0 |
0 |
10 |
s |
1 |
3 |
0 |
1 |
0 |
10 |
|
-15 |
-10 |
0 |
0 |
1 |
0 |
In the initial Simplex tableau the most negative entry is
-15 so the x-column is pivot column. Also, $\frac{10}{2}$=5 is the smallest positive
value. Thus, r-row with element 2 on x column is the pivot element.
Dividing First Row by 2
Basic Variable |
x |
y |
r |
s |
p |
Constant |
r |
1 |
½ |
½ |
0 |
0 |
5 |
s |
1 |
3 |
0 |
1 |
0 |
10 |
|
-15 |
-10 |
0 |
0 |
1 |
0 |
R2à
R2-R1 and R3à R3+15R1
Basic Variable |
x |
y |
r |
s |
p |
Constant |
r |
1 |
½ |
½ |
0 |
0 |
5 |
s |
0 |
$\frac{5}{2}$ |
-½ |
1 |
0 |
5 |
|
0 |
-$\frac{5}{2}$ |
$\frac{15}{2}$ |
0 |
1 |
75 |
Here last row still has -ve entry. So y is pivot column and
s-row is the pivot row with $\frac{5}{2}$ as pvot element.
R2à
$\frac{2}{5}$R2
Basic Variable |
x |
y |
r |
s |
p |
Constant |
r |
1 |
½ |
½ |
0 |
0 |
5 |
s |
0 |
1 |
-$\frac{1}{5}$ |
$\frac{2}{5}$ |
0 |
2 |
|
0 |
-$\frac{5}{2}$ |
$\frac{15}{2}$ |
0 |
1 |
75 |
Again, R3 à
R3+$\frac{5}{2}$R2 and R1àR1- ½ R2
Basic Variable |
x |
y |
r |
s |
p |
Constant |
r |
1 |
½ |
$\frac{3}{5}$ |
-$\frac{1}{5}$ |
0 |
4 |
s |
0 |
1 |
-$\frac{1}{5}$ |
$\frac{2}{5}$ |
0 |
2 |
|
0 |
0 |
7 |
1 |
1 |
80 |
Since there is no negative entry in last row. Thus Maximum
Solution is obtained.
Pmax=80 at x=4 and y=2.
19) A particle is projected with a velocity ‘v’ and greatest height is ‘H’, prove the horizontal range R is: R = 4$\sqrt {H\left( {\frac{{{v^2}}}{{2g}} - H} \right)} $.
Solution:
Let β be angle of projection. Then,
$H = \frac{{{v^2}{{\sin }^2}\beta }}{{2g}}$
$R = \frac{{{v^2}\sin 2\beta }}{g}$
Now,
$\frac{{{v^2}}}{{2g}} - H$
=$\frac{{{v^2}}}{{2g}} - \frac{{{v^2}{{\sin }^2}\beta
}}{{2g}}$
=$\frac{{{v^2}}}{{2g}}(1 - {\sin ^2}\beta )$
=$ \frac{{{v^2}}}{{2g}}{\cos ^2}\beta $
And,
R.H.S of Question:
4$\sqrt {H\left( {\frac{{{v^2}}}{{2g}} - H} \right)} $ = $ 4.\frac{{v\sin
\beta .\cos \beta }}{{2g}}$
$4\sqrt {\frac{{{v^2}{{\sin }^2}\beta
}}{{2g}}.\frac{{{v^2}}}{{2g}}{{\cos }^2}\beta } $
$4.\frac{{{v^2}\sin \beta .\cos \beta }}{{2g}}$
$\frac{{{v^2}.2\sin \beta .\cos \beta }}{g}$
$\frac{{{v^2}\sin 2\beta }}{g}$
=R
=L.H.S
OR
The cost function C(x) in thousands of rupees for
producing x units of math’s textbooks is given by C(x)=30+20x-0.5x2
, 0≤x≤15.
a) Find the marginal cost of Function.
b) Find the marginal cost for producing 12000 math’s
textbooks.
Solution:
C(x)=30+20x-0.5x2, x, y≥0
(a) Marginal Cost of Function = C‘(x)=0+20-x
(b) Marginal cost = 20-x=20-12=Rs. 8 (in thousands)
Group C
20) a) Using matrix methods, solve the following system of
linear equations: x+y+z = 4, 2x+y-3z = -9,2x-y+z = -1
b) Apply De-Moiver’s theorem to find the value of [2(𝑐𝑜𝑠15°
+ 𝑖𝑠𝑖𝑛15°)] 6
c) Prove that: $\left( {1 + \frac{1}{{1!}} +
\frac{1}{{2!}} + \frac{1}{{3!}} + ...} \right)\left( {1 - \frac{1}{{1!}} +
\frac{1}{{2!}} - \frac{1}{{3!}} + ...} \right) = 1$
Solution:
(a)
(b) De Moiver’s Theorem states that, {r(cosθ+isinθ)}n=rn(cosnθ+isinnθ).
∴[2(𝑐𝑜𝑠15° + 𝑖𝑠𝑖𝑛15°)]
6 = 26 [cos90 + i sin90] = 64i
(c) We Know ex=
$1 + \frac{x}{{1!}} + \frac{{{x^2}}}{{2!}} + \frac{{{x^3}}}{{3!}} + ...$
Put x = 1
e1=$1 + \frac{1}{{1!}} + \frac{1}{{2!}} +
\frac{1}{{3!}} + ...$(i)
Put x = -1
e-1=$1 - \frac{1}{{1!}} + \frac{1}{{2!}} -
\frac{1}{{3!}} + ...$(ii)
Taking LHS of Question:
$\left( {1 + \frac{1}{{1!}} + \frac{1}{{2!}} +
\frac{1}{{3!}} + ...} \right)\left( {1 - \frac{1}{{1!}} + \frac{1}{{2!}} -
\frac{1}{{3!}} + ...} \right)$
=e × e-
=1
=R.H.S
21) a) Find the direction cosines of the line joining the
points (4,4,-10) and (-2,2,4).
b) Find the angle between the two diagonals of a cube.
c) Find the vertices of the conic section: 16(y-1)2
-9(x-5)2 = 144.
Solution:
(a) Given Points: P(4,4,-10) and Q(-2,2,4)
Direction ratios of PQ = -2-4, 2-4, 4-(-10)=-6, -2, 14
PQ=$\sqrt {{{( - 6)}^2} + {{( - 2)}^2} + {{(14)}^2}} {\rm{ = 2}}\sqrt {59} $
Thus, Direction cosines are: $\frac{{ -
6}}{{{\rm{2}}\sqrt {59} }},\frac{{ - 2}}{{{\rm{2}}\sqrt {59}
}},\frac{{14}}{{{\rm{2}}\sqrt {59} }}$
(b)
O(0,0,0),A(a,0,0),B(a,a,0),C(0,a,0),D(0,a,a),E(0,0,a),F(a,0,a),G(a,a,a)
There are four diagonals OG,CF,AD and BE for
the cube.
Let us consider any two say OG and AD
We know that if A(x1,y1,z1) and B(x2,y2,z2) are
two points in space then
AB=(x2−x1)i+(y2−y1)j+(z2−z1)k
⇒OG=(a−0)i+(a−0)j+(a−0)k=ai+aj+ak
and AD=(0−a)i+(a−0)j+(a−0)k=−ai+aj+ak.
Therefore ∣$\overrightarrow {OG} $∣=$\sqrt
{{a^2} + {a^2} + {a^2}} = a\sqrt 3 $
And,
$ \overrightarrow {AD} $ = $\sqrt {{{( - a)}^2} + {a^2} +
{a^2}} = a\sqrt 3 $
$\overrightarrow {OG} .\overrightarrow {AD} = -
{a^2} + {a^2} + {a^2} = {a^2}$
We know that angle between two vectors $ {\overrightarrow
{OG} , \overrightarrow {AD} }$ is given by θ = $ {\cos ^{ - 1}}\frac{{\overrightarrow
{OG} .\overrightarrow {AD} }}{{|\overrightarrow {OG} |.|\overrightarrow {AD}
|}}$
=${\cos ^{ - 1}}\frac{{{a^2}}}{{a\sqrt 3 .a\sqrt 3 }}$
=${\cos ^{ - 1}}\frac{1}{3}$
(c) Given:
16(y-1)2 -9(x-5)2 = 144….(i)
Dividing Both Sides by 144.
$\frac{{{{\left( {y - 1} \right)}^2}}}{9} - \frac{{{{\left(
{x - 5} \right)}^2}}}{{16}} = 1$
Comparing with $\frac{{{{\left( {y - h}
\right)}^2}}}{{{a^2}}} - \frac{{{{\left( {x - k} \right)}^2}}}{{{b^2}}} = 1$
We Get:
h=1, k=5, a=3, b=4
Thus, Vertex = (h±a, k) = (1±3, 4) =(4,4) 0r (-2, 4)
22) a) If the limiting value of $\frac{{f(x) - 5}}{{x -
3}}$ at x= 3 is 2 by using L’ Hospital’ rule, find the appropriate value of
f(x).
b) Write any one homogeneous differential equation in
(x,y) and solve it.
c) The concept of anti-derivative is necessary for
solving a differential equation. Justify this statement with example.
Solution:
(a)$\begin{array}{l}\frac{{\mathop {\lim }\limits_{x
\to 3} f(x) - 5}}{{x - 3}} = 2\\or,\mathop {\lim }\limits_{x \to 3} f(x) - 5 =
2x - 6\\or,\mathop {\lim }\limits_{x \to 3} f(x) = 2x - 1\end{array}$
(b) Homogenous differential Equation in (x,y) is $\frac{{dy}}{{dx}} = \frac{y}{x} + 1$
Solving This Equation:
$\frac{{dy}}{{dx}} = \frac{y}{x} + 1$
Put y =vx, then $\frac{{dy}}{{dx}} = v + x\frac{{dv}}{{dx}}$
$\begin{array}{l}\frac{y}{x} + 1 = v +
x\frac{{dv}}{{dx}}\\or,{\rm{ v + 1 = v + }}x\frac{{dv}}{{dx}}\\or,1 =
x\frac{{dv}}{{dx}}\\or,\frac{{dx}}{x} = dv\end{array}$
Integrate both sides
v = log x + log c
or, v = log cx
Replacing v
$\frac{y}{x} = \log cx$
∴ y = x log cx
(c) The concept of anti-derivatives is necessary for
solving differential equation. Let’s understand this statement through the following
example:
Consider a differential Equation $\frac{{dy}}{{dx}} =
\frac{x}{y}$
i.e., y.dy = x.dx
Let’s integrate this on both sides:
$\int {y.dy{\rm{ }} = {\rm{ }}\int {x.dx} } $
$\frac{{{y^2}}}{2} = \frac{{{x^2}}}{2} + C$
Or, y2=x2+2C
i.e., y2=x2+C